本文介绍了一种机器学习方法,可以在宏观水平下模拟电动车辆的电力消耗,即在不存在速度轮廓,同时保持微观级别精度。对于这项工作,我们利用了基于代理的代理的运输工具来模拟了在各种场景变化的大芝加哥地区发生的模型旅行,以及基于物理的建模和仿真工具,以提供高保真能量消耗值。产生的结果构成了车辆路径能量结果的非常大的数据集,其捕获车辆和路由设置的可变性,并且掩盖了车速动力学的高保真时间序列。我们表明,尽管掩盖了影响能量消耗的所有内部动态,但是可以以深入的学习方法准确地学习聚合级能量消耗值。当有大规模数据可用,并且仔细量身定制的功能工程,精心设计的模型可以克服和检索潜在信息。该模型已部署并集成在Polaris运输系统仿真工具中,以支持各个充电决策的实时行为运输模型,以及电动车辆的重新排出。
translated by 谷歌翻译
Deformable image registration is a key task in medical image analysis. The Brain Tumor Sequence Registration challenge (BraTS-Reg) aims at establishing correspondences between pre-operative and follow-up scans of the same patient diagnosed with an adult brain diffuse high-grade glioma and intends to address the challenging task of registering longitudinal data with major tissue appearance changes. In this work, we proposed a two-stage cascaded network based on the Inception and TransMorph models. The dataset for each patient was comprised of a native pre-contrast (T1), a contrast-enhanced T1-weighted (T1-CE), a T2-weighted (T2), and a Fluid Attenuated Inversion Recovery (FLAIR). The Inception model was used to fuse the 4 image modalities together and extract the most relevant information. Then, a variant of the TransMorph architecture was adapted to generate the displacement fields. The Loss function was composed of a standard image similarity measure, a diffusion regularizer, and an edge-map similarity measure added to overcome intensity dependence and reinforce correct boundary deformation. We observed that the addition of the Inception module substantially increased the performance of the network. Additionally, performing an initial affine registration before training the model showed improved accuracy in the landmark error measurements between pre and post-operative MRIs. We observed that our best model composed of the Inception and TransMorph architectures while using an initially affine registered dataset had the best performance with a median absolute error of 2.91 (initial error = 7.8). We achieved 6th place at the time of model submission in the final testing phase of the BraTS-Reg challenge.
translated by 谷歌翻译
Deep neural networks (DNNs) have rapidly become a \textit{de facto} choice for medical image understanding tasks. However, DNNs are notoriously fragile to the class imbalance in image classification. We further point out that such imbalance fragility can be amplified when it comes to more sophisticated tasks such as pathology localization, as imbalances in such problems can have highly complex and often implicit forms of presence. For example, different pathology can have different sizes or colors (w.r.t.the background), different underlying demographic distributions, and in general different difficulty levels to recognize, even in a meticulously curated balanced distribution of training data. In this paper, we propose to use pruning to automatically and adaptively identify \textit{hard-to-learn} (HTL) training samples, and improve pathology localization by attending them explicitly, during training in \textit{supervised, semi-supervised, and weakly-supervised} settings. Our main inspiration is drawn from the recent finding that deep classification models have difficult-to-memorize samples and those may be effectively exposed through network pruning \cite{hooker2019compressed} - and we extend such observation beyond classification for the first time. We also present an interesting demographic analysis which illustrates HTLs ability to capture complex demographic imbalances. Our extensive experiments on the Skin Lesion Localization task in multiple training settings by paying additional attention to HTLs show significant improvement of localization performance by $\sim$2-3\%.
translated by 谷歌翻译
Multivariate Hawkes processes are temporal point processes extensively applied to model event data with dependence on past occurrences and interaction phenomena. In the generalised nonlinear model, positive and negative interactions between the components of the process are allowed, therefore accounting for so-called excitation and inhibition effects. In the nonparametric setting, learning the temporal dependence structure of Hawkes processes is often a computationally expensive task, all the more with Bayesian estimation methods. In general, the posterior distribution in the nonlinear Hawkes model is non-conjugate and doubly intractable. Moreover, existing Monte-Carlo Markov Chain methods are often slow and not scalable to high-dimensional processes in practice. Recently, efficient algorithms targeting a mean-field variational approximation of the posterior distribution have been proposed. In this work, we unify existing variational Bayes inference approaches under a general framework, that we theoretically analyse under easily verifiable conditions on the prior, the variational class, and the model. We notably apply our theory to a novel spike-and-slab variational class, that can induce sparsity through the connectivity graph parameter of the multivariate Hawkes model. Then, in the context of the popular sigmoid Hawkes model, we leverage existing data augmentation technique and design adaptive and sparsity-inducing mean-field variational methods. In particular, we propose a two-step algorithm based on a thresholding heuristic to select the graph parameter. Through an extensive set of numerical simulations, we demonstrate that our approach enjoys several benefits: it is computationally efficient, can reduce the dimensionality of the problem by selecting the graph parameter, and is able to adapt to the smoothness of the underlying parameter.
translated by 谷歌翻译
AI-powered Medical Imaging has recently achieved enormous attention due to its ability to provide fast-paced healthcare diagnoses. However, it usually suffers from a lack of high-quality datasets due to high annotation cost, inter-observer variability, human annotator error, and errors in computer-generated labels. Deep learning models trained on noisy labelled datasets are sensitive to the noise type and lead to less generalization on the unseen samples. To address this challenge, we propose a Robust Stochastic Knowledge Distillation (RoS-KD) framework which mimics the notion of learning a topic from multiple sources to ensure deterrence in learning noisy information. More specifically, RoS-KD learns a smooth, well-informed, and robust student manifold by distilling knowledge from multiple teachers trained on overlapping subsets of training data. Our extensive experiments on popular medical imaging classification tasks (cardiopulmonary disease and lesion classification) using real-world datasets, show the performance benefit of RoS-KD, its ability to distill knowledge from many popular large networks (ResNet-50, DenseNet-121, MobileNet-V2) in a comparatively small network, and its robustness to adversarial attacks (PGD, FSGM). More specifically, RoS-KD achieves >2% and >4% improvement on F1-score for lesion classification and cardiopulmonary disease classification tasks, respectively, when the underlying student is ResNet-18 against recent competitive knowledge distillation baseline. Additionally, on cardiopulmonary disease classification task, RoS-KD outperforms most of the SOTA baselines by ~1% gain in AUC score.
translated by 谷歌翻译
标准化流量(NF)是基于可能性的强大生成模型,能够在表达性和拖延性之间进行折衷,以模拟复杂的密度。现已建立的研究途径利用了最佳运输(OT),并寻找Monge地图,即源和目标分布之间的努力最小的模型。本文介绍了一种基于Brenier的极性分解定理的方法,该方法将任何受过训练的NF转换为更高效率的版本而不改变最终密度。我们通过学习源(高斯)分布的重新排列来最大程度地减少源和最终密度之间的OT成本。由于Euler的方程式,我们进一步限制了导致估计的Monge图的路径,将估计的Monge地图放在量化量的差异方程的空间中。所提出的方法导致几种现有模型的OT成本降低的平滑流动,而不会影响模型性能。
translated by 谷歌翻译
性能是软件最重要的素质之一。因此,已经提出了几种技术来改进它,例如程序转换,软件参数的优化或编译器标志。许多自动化的软件改进方法使用类似的搜索策略来探索可能改进的空间,但可用的工具一次只专注于一种方法。这使得比较和探索各种类型改进的相互作用是不切实际的。我们提出了Magpie,这是一个统一的软件改进框架。它提供了一个共同的基于编辑序列的表示,该表示将搜索过程与特定的改进技术隔离,从而实现了简化的协同工作流程。我们使用基本的本地搜索提供案例研究,以比较编译器优化,算法配置和遗传改善。我们选择运行时间作为我们的效率度量,并评估了我们在C,C ++和Java编写的四个现实世界软件上的方法。我们的结果表明,独立使用的所有技术都发现了重大的运行时间改进:编译器优化最高25%,算法配置为97%,使用遗传改进的源代码为61%。我们还表明,通过不同技术发现的变体的部分组合,可以获得多达10%的性能。此外,共同表示还可以同时探索所有技术,从而提供了分别使用每种技术的竞争替代方案。
translated by 谷歌翻译
贝叶斯核心通过构建数据点的一个较小的加权子集近似后验分布。任何在整个后验上运行的推理过程在计算上昂贵,都可以在核心上廉价地运行,其结果近似于完整数据上的结果。但是,当前方法受到大量运行时的限制,或者需要用户指定向完整后部的低成本近似值。我们提出了一种贝叶斯核心结构算法,该算法首先选择均匀随机的数据子集,然后使用新型的准Newton方法优化权重。我们的算法是一种易于实现的黑框方法,不需要用户指定低成本后近似。它是第一个在输出核心后部的KL差异上带有一般高概率构成的。实验表明,我们的方法可与具有可比的施工时间的替代方案相比,核心质量有显着改善,所需的存储成本和用户输入要少得多。
translated by 谷歌翻译
PEPIT是一种Python软件包,旨在简化对可能涉及梯度,投影,近端或线性优化oracels的大型一阶优化方法的最坏情况分析的最坏情况分析,以及它们的近似或布赖曼变体。简而言之,PEPIT是一种封装,可实现一级优化方法的计算机辅助案例分析。关键的潜在思想是施放执行最坏情况分析的问题,通常称为性能估计问题(PEP),作为可以在数字上解决的半纤维程序(SDP)。为此,只需要包用户才能像他们已经实现的那样写出一阶方法。然后,包裹处理SDP建模部件,并且最坏情况分析通过标准求解器进行数字地执行。
translated by 谷歌翻译
患者调度是一项艰巨的任务,因为它涉及处理随机因素,例如患者未知的到达流动。调度癌症患者的放射治疗治疗面临着类似的问题。治疗患者需要在推荐的最后期限内开始治疗,即入院后14或28天,而在入院后1至3天内需要迫切治疗的姑息治疗的治疗能力。大多数癌症中心通过保留用于急诊患者的固定数量的治疗槽来解决问题。然而,这种平面预留方法并不理想,并且可能在某些日子里造成急诊患者的过期治疗,同时在其他几天内没有充分利用治疗能力,这也导致治疗患者的延迟治疗。这个问题在大型和拥挤的医院中特别严重。在本文中,我们提出了一种基于预测的在线动态放射治疗调度方法。一个离线问题,其中提前已知所有未来的患者到达,以使用整数编程来解决。然后培训回归模型以识别患者到达模式之间的链接及其理想的等待时间。然后,培训的回归模型以基于预测的方法嵌入,该方法根据其特征和日历的当前状态来调度患者。数值结果表明,我们的预测方法有效地防止了应急患者的过度处理,同时与基于平面预留政策的其他调度方法相比保持良好的等待时间。
translated by 谷歌翻译